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Definitions

A bipartite map with a boundary is a rooted bipartite map in which the face
on the right of the root edge is called the external face, and the other faces
called internal faces.
A quadrangulation with a boundary is a bipartite map with a boundary
whose internal faces are all quadrangles.

Remark

The boundary is not necessarily
simple.

We denote by 2p the perimeter of
the map (i.e. degree of the exter-
nal face).

↖ 2p = 24
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Loop O(n) model on quadrangulations

A loop configuration on a quadrangulation with boundary q is a collection of
disjoint simple closed paths on the dual of q which do not visit the external
face. We restrict ourselves to the so-called rigid loops, i.e. such that every
internal face is of type

or

Op =

{
(q, `)

∣∣∣∣q is a quadrangulation with a boundary of length 2p,
` is a rigid loop configuration on q.

}
For n ∈ (0, 2) and g, h > 0, let

Fp(n; g, h) =
∑

(q,`)∈Op

g# h# n#

A triple (n; g, h) is admissible if Fp(n; g, h) <∞. (This is independent of p).
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Loop O(n) model on quadrangulations

Definition

Fix p > 0. For each admissible triple (n; g, h), we define a probability
distribution on Op by

P(p)
n;g,h((q, `)) =

g# h# n#

Fp(n; g, h)

 P(12)
n;g,h( · ) =

g8 h38 n9

F12(n; g, h)
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Theorem (Borot, Bouttier, Guitter ’12)

For all admissible (n; g, h), there exist κ(n; g, h) and α(n; g, h) such that

Fp(n; g, h) ∼
p→∞

C κ−p p−α−1/2

For each n ∈ (0, 2), there are four possible values of α
subcritical: α = 1 generic critical: α = 2
non-generic critical

dense phase: α =
3

2
− 1

π
arccos(n/2) ∈ (1, 3/2)

dilute phase: α =
3

2
+

1

π
arccos(n/2) ∈ (3/2, 2)

h

g1
12

dense
dilute

generic
criticalsubcritical
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The perimeter cascade of loops

We focus on the hierarchical structure of the loops, which we represent by a
tree labeled by the half-perimeters of the loops.
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We complete the tree by vertices of label 0. This gives a random process
(χ(p)(u))u∈U indexed by the Ulam tree U =

⋃
n≥0(N∗)n. We call this process

the (half-)perimeter cascade of the rigid loop O(n) model on
quadrangulations.
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Main results

Theorem (CCM 2016+)

Let (χ(p)(u))u∈U be the previously defined perimeter cascade. Then, we have
the following convergence in distribution in `∞(U):(

p−1χ(p)(u)
)

u∈U
p→∞
=⇒ (Zα(u))u∈U ,

where Zα = (Zα(u))u∈U is a multiplicative cascade to be defined later.
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Related results

Borot, Bouttier, Duplantier ’16: Number of loops surrounding a marked
vertex.

Common belief: map + O(n) loops ↔ Liouville quantum gravity +
conformal loop ensemble (more on this later).

huge literature on random planar maps with statistical mechanics model
(uniform spanning tree, Potts model) in different scientific fields
(combinatorics, probability, physics)

Random planar map without statistical mechanics model, endowed with
graph metric: limiting metric space is Brownian Map (Miermont, Le Gall
’13)
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Multiplicative cascades
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Multiplicative cascades

Definition

A multiplicative cascade is a random process Z = (Z(u))u∈U such that

Z(∅) = 1, ∀u ∈ U , i ≥ 1 : Z(ui) = Z(u) · ξ(u, i),

where (ξ(u))u∈U = (ξ(u, i), i ≥ 1)u∈U is an i.i.d. family of random vectors in
(R+)N

∗
. The law of ξ = ξ(∅) is the offspring distribution of the cascade Z .

Remark: X = log Z = (log Z(u))u∈U is a branching random walk.
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Multiplicative cascades and branching random walks: a
short history

Cascades multiplicatives: Mandelbrot, Kahane, Peyrière. . .

Motivation: Model of the energy cascade in turbulent fluids

Studied mostly on d-ary tree (i.e. ξi = 0 pour i > d).

Multiplicative cascade gives a random measure on the tree
boundary, theory mostly studies the multifractal properties
of this random measure. Interaction between geometry of
the tree and the values of the process Z(u).

Branching random walks: Hammersley, Kingman, Biggins. . .

Motivation: Generalisation of the Crump-Mode-Jagers
process (branching process with age)

u: particle, X(u): position of the particle u.

Theory mostly studies the distribution of the particle
positions, ignoring the geometry of the tree. Particular focus
on extremal particles.

’
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Mellin transform and martigales of multiplicative cascades

Definition (Mellin transform)

φ(θ) := E

[∑
i∈N∗

ξ(i)θ
]
∈ (−∞,+∞]

logφ is convex

W (θ)
n := φ(θ)−n∑

|u|=n Z(u)θ is
a martingale.

log φ

θ1 θ2 θ

(log φ)′(θ1) < (log φ(θ1))/θ1
uniformly integrable

(log φ)′(θ2) > (log φ(θ2))/θ2
not uniformly integrable

Theorem (Biggins, Lyons)

(W (θ)
n )n≥0 is uniformly integrable (u.i.) if and only if

E[W (θ)
1 log+ W (θ)

1 ] <∞ and (logφ)′(θ) < (logφ(θ))/θ
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The multiplicative cascade Zα

(ζt)t≥0: α-stable Lévy process without negative jumps, started from 0.

τ : the hitting time of −1 by ζ .

(∆ζ)↓τ : the jumps of ζ before τ , sorted in ↓ order.

d να := 1/τ
E[1/τ ]d ν̃α, where ν̃α is the law of (∆ζ)↓τ

Theorem (CCM 2016+)

Let (χ(p)(u))u∈U be the perimeter cascade of the rigid loop O(n) model on
quadrangulations. Then we have the convergence in distribution in `∞(U):(

p−1χ(p)(u)
)

u∈U
p→∞
=⇒ (Zα(u))u∈U ,

where (Zα(u))u∈U is a multiplicative cascade of offspring distribution να.
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Properties of Zα

Theorem (CCM 2016+)

The Mellin transform of the multiplicative cascade Zα is

φα(θ) =
sin(π(2− α))

sin(π(θ − α))
pour θ ∈ (α, α+1) and φα(θ) =∞ otherwise.
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Intrinsic martingales

If φα(θ) = 1, then

W (θ)
n =

∑
|u|=n

Zα(u)θ

is called an intrinsic martingale. For α 6= 3/2, there are two intrinsic
martingales with θ = 2 and θ = 2α− 1. It follows from Biggins’ theorem that

if α ∈ (3/2, 2) (dilute phase), then 2 < 2α− 1, hence W (2) is u.i.,
whereas W (2α−1) is not,

if α ∈ (1, 3/2) (dense phase), then 2α− 1 < 2, hence W (2α−1) is u.i.,
whereas W (2) is not,

This suggests the following for the volume Volp of the random
quandragulation with perimeter p:

Volume scaling

dilute phase: Volp /p2 converges in law to W (2)
∞ as p→∞

dense phase: Volp /p2α−1 converges in law to W (2α−1)
∞ as p→∞.
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Proofs
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The gasket decomposition [Borot, Bouttier, Guitter ’12]

gasket: a bipartite map
A hole of size 2k in the gasket:

an element of Ok + a “necklace”

⇒ fixed point condition{
Fp(n; g, h) = Bp(g1, g2, . . .)

gk = gδk,2 + n h2k Fk(n; g, h) (k ≥ 1)
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The gasket decomposition

A (head) gasket.
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Encoding the gasket: the BDG and JS bijections
[Bouttier, Di Francesco, Guitter ’04, Janson, Stefánsson ’15]

Starting point:
pointed bipartite map

gk  face of degree 2k
BDG−−−−→ gk  • of degree k
labels−−−→ g̃k  • of degree k g̃k = gk

(2k−1
k

)
JS−−−→ g̃k  • with k descendants (k ≥ 1)

(1 ◦ with 0 descendant)
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Encoding the gasket: the BDG and JS bijections

pointed bipartite maps under
the Boltzmann distribution

P•p,g(M = m•) =

∏∞
k=1 g

fk(m
•)

k

B•p(g)

BDG−→
JS

Galton-Watson tree
of offspring distribution

µJS(k) = g̃kκ
k−1

∼ Ck−α

face of degree 2k −→ internal vertex with k children

vertices −→ leaves

The BDG-JS bijection applies naturally to pointed bipartite maps. To recover
a non-pointed Boltzmann map, we need to bias the law of the Galton-Watson
tree by 1/{its number of leaves}.

Ep,g[F(M)] =
E•p,g

[
1

#vertexF(M)
]

E•p,g
[

1
#vertex

] =
EGW

[
1

#leafF(T)
]

EGW
[

1
#leaf

]
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B•p(g)

BDG−→
JS

Galton-Watson tree
of offspring distribution

µJS(k) = g̃kκ
k−1

∼ Ck−α

face of degree 2k −→ internal vertex with k children

vertices −→ leaves

The BDG-JS bijection applies naturally to pointed bipartite maps. To recover
a non-pointed Boltzmann map, we need to bias the law of the Galton-Watson
tree by 1/{its number of leaves}.

Ep,g[F(M)] =
E•p,g

[
1

#vertexF(M)
]

E•p,g
[

1
#vertex

] =
EGW

[
1

#leafF(T)
]

EGW
[

1
#leaf

]
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Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let (χ(p)(i))i≥1 be the half-degrees of faces of the gasket, sorted in ↓ order
and completed with zeros. Then for all bounded functions F ,

E[F(χ(p)(i))] =
E
[

1
#{i≤Tp:Xi=−1}F((Xi + 1)↓Tp

)
]

E
[

1
#{i≤Tp:Xi=−1}

]

≈
E
[
1
τ F((∆ζ)↓τ )

]
E
[
1
τ

]

where Sn = X1 + X2 + · · ·+ Xn is a random walk with step distribution
µ(k) = µJS(k + 1) (k ≥ −1) and Tp its hitting time of −p.

When p is large, #{i ≤ Tp : Xi = −1} ≈ µ(−1)Tp.

Proposition

(p−1χ(p)(i))i≥1 =⇒
p→∞

να as p→∞ in the sense of finite dimensional

marginals.

Pascal Maillard Loop O(n) model on random quadrangulations: the cascade of loop perimeters 23 / 31



Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let (χ(p)(i))i≥1 be the half-degrees of faces of the gasket, sorted in ↓ order
and completed with zeros. Then for all bounded functions F ,

E[F(χ(p)(i))] =
E
[

1
#{i≤Tp:Xi=−1}F((Xi + 1)↓Tp

)
]

E
[

1
#{i≤Tp:Xi=−1}

]

≈
E
[
1
τ F((∆ζ)↓τ )

]
E
[
1
τ

]

where Sn = X1 + X2 + · · ·+ Xn is a random walk with step distribution
µ(k) = µJS(k + 1) (k ≥ −1) and Tp its hitting time of −p.

When p is large, #{i ≤ Tp : Xi = −1} ≈ µ(−1)Tp.

Proposition

(p−1χ(p)(i))i≥1 =⇒
p→∞

να as p→∞ in the sense of finite dimensional

marginals.

Pascal Maillard Loop O(n) model on random quadrangulations: the cascade of loop perimeters 23 / 31



Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let (χ(p)(i))i≥1 be the half-degrees of faces of the gasket, sorted in ↓ order
and completed with zeros. Then for all bounded functions F ,

E[F(χ(p)(i))] ≈
E
[

1
Tp

F((Xi + 1)↓Tp
)
]

E
[

1
Tp

] ≈
E
[
1
τ F((∆ζ)↓τ )

]
E
[
1
τ

]
where Sn = X1 + X2 + · · ·+ Xn is a random walk with step distribution
µ(k) = µJS(k + 1) (k ≥ −1) and Tp its hitting time of −p.

When p is large, #{i ≤ Tp : Xi = −1} ≈ µ(−1)Tp.

Proposition

(p−1χ(p)(i))i≥1 =⇒
p→∞

να as p→∞ in the sense of finite dimensional

marginals.

Pascal Maillard Loop O(n) model on random quadrangulations: the cascade of loop perimeters 23 / 31



An identity on random walks

Theorem (CCM)

Let Sn = X1 + · · ·+ Xn be a random walk with steps Xi ∈ {−1, 0, 1, · · · }.
Let Tp be its hitting time of −p. Then, for all f : Z→ R+ and all p ≥ 2,

E

 1

Tp − 1

Tp∑
i=1

f (Xi)

 = E
[
f (X1)

p

p + X1

]
.

Theorem (CCM)

Let (ηt)t≥0 be a Lévy process without negative jumps and of Lévy measure π.
Let τ be its hitting time at −1. Then, for all measurable f : R∗+ → R+

E

 1

τ

∑
t≤τ

f (∆ηt)

 =

∫
f (x)

1

1 + x
π(dx).
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Proof of the discrete identity

Kemperman’s formula ( /cyclic lemma /ballot theorem . . .)

If the F is invariant under cyclic permutation of its arguments, then

E
[
F(X1, · · · , Xn)1{Tp=n}

]
=

p

n
E
[
F(X1, · · · , Xn)1{Sn=−p}

]

Proof.

An := E

[
n∑

i=1

f (Xi)1{Tp=n}

]
=

p

n
E

[
n∑

i=1

f (Xi)1{Sn=−p}

]
by Kemperman’s formula

= pE
[
f (X1)1{Sn=−p}

]
by cyclic symmetry

= pE
[
f (X1)1{S̃n−1=−p−X1}

]
by Markov property

= pE
[
f (X1)

n− 1

p + X1
1{T̃p+X1

=n−1}

]
by Kemperman’s formula.

For p ≥ 2 we have always Tp ≥ 2, hence

E

 1

Tp − 1

Tp∑
i=1

f (Xi)

 =
∞∑

n=2

An

n− 1
= p

∞∑
n=2

E
[
f (X1)

1

p + X1
1{T̃p+X1

=n−1}

]

= E
[
f (X1)

p

p + X1

]
.
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Consequences of the identities

The Mellin transform of the continuous cascade Zα: for θ ∈ (α, α+ 1),

E

[
1
τ

∑
t≤τ

(∆ηt)
θ

]
E
[
1
τ

] =

∫
xθ

1+xπ(dx)∫
1

1+xπ(dx)
=

sin(π(2− α))

sin(π(θ − α))

Convergence of moments of the offspring distribution

E

∑
|u|=k

(
p−1χ(p)(u)

)θ −→
p→∞

E

∑
|u|=k

(Zα(u))θ


For all k ∈ N: convergence in `∞(Uk) of the perimeter cascade (Uk :
first k generations of the Ulam tree).
Convergence in `∞(U): NOT a consequence, obtained by other
methods (martingale inequalities and exact bounds on volume of
random quadrangulations with small perimeter).
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Relation with results on CLE
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Map + O(n) ↔ LQG + CLE

Common belief: ∃ embedding of planar maps to unit disk D (uniformization,
circle packing...), such that

volume measure of random planar map + O(n) loops → LQGγ + CLEκ

Parameters related by

α− 3

2
= ± 1

π
arccos(n/2) =

4

κ
− 1, γ =

√
min(κ, 16/κ)

Let’s focus on the dilute phase:

α > 3/2, κ < 4, γ =
√
κ

Then we saw before: Volp ∼ p2.
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Nb of loops around small balls in random quadrangulation

For δ > 0 (small), consider the set Lδ of vertices u in the Ulam tree such that
Zα(u)2 < δ and Zα(v)2 ≥ δ for all v ≺ u. Define

W (θ),δ =
∑
u∈Lδ

ϕα(θ)−|u|Zα(u)θ.

Then since (W (θ)
n )n≥0 is u.i.,

1 = E[W (θ),δ] ≈ δθ/2E[
∑
u∈Lδ

ϕα(θ)−|u|].

Suggests: if we partition the vertices of the quadrangulation into metric balls
Bδ(v) of volume δ and denote by Nδ(v) the number of vertices surrounding
the ball Bδ(v), then (cf Borot, Bouttier, Duplantier ’16)

E[
∑

v

φα(θ)−Nδ(v)] ≈ δ−θ/2.
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Nb of loops around small quantum balls, LQG√κ + CLEκ

Ñr = number of CLEκ loops surrounding Euclidean ball of radius r > 0.
Then (Schramm, Sheffield, Wilson ’09, Miller, Sheffield, Watson ’16)

E[ψκ(θ̃)−Ñr ] ≈ r−θ̃, where

ψκ(θ̃) =
− cos(4π/κ)

cos(π
√

(1− 4/κ)2 − 8θ̃/κ)
= φα(1 +

4

κ
−
√

(1− 4/κ)2 − 8θ̃/κ).

Explanation (cf BBD16 for similar derivation): partition space into squares of
quantum volume ≈ δ. N (S) = number of CLE loops surrounding square S.
Then,

E[
∑

S

ψκ(θ̃)−Ñ (S)] ≈ δ 1
2 (−1−

4
κ
+
√

(1−4/κ)2−8θ̃/κ).

Comparison with quandragulations: θ = 1 + 4
κ −

√
(1− 4/κ)2 − 8θ̃/κ,

ψκ(θ̃) = φα(θ).

Pascal Maillard Loop O(n) model on random quadrangulations: the cascade of loop perimeters 30 / 31



Nb of loops around small quantum balls, LQG√κ + CLEκ
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Thank you for your attention !

Pascal Maillard Loop O(n) model on random quadrangulations: the cascade of loop perimeters 31 / 31


	Model and results
	Multiplicative cascades
	Proofs
	Relation with results on CLE

